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Propagation in Rectangular Waveguide Filled
with Skew Uniaxial Dielectric

J. B. DAVIES

Abstract—==A solution is given for propagation in rectangular wave-
guide fully loaded with a uniaxial dielectric, with the c-axis lying any-
where in the transverse plane. This problem arises in the design of par-
ticular traveling-wave masers. By application of the Rayleigh-Ritz method
to Berk’s variational expression, the problem is reduced to a matrix
eigenvalue problem, and in a form suitable for direct evaluation on a
digital computer. An explicit approximate solution is, however, shown to
give accurate results.

The analysis can be interpreted directly in terms of mode coupling of
the usual rectangular waveguide modes, and the possible extension is indi-
cated to general tensor media and to circular or elliptical waveguide.

INTRODUCTION

HE MILLIMETER wavelengths are of great interest
Tin applications, such as radar, satellite communica-

tion, and radio astronomy, where the requirement is
for receivers with the lowest possible noise temperature.
Traveling-wave masers are therefore being extended from
the centimetric to the millimetric wavelengths [1], [2]. At
these wavelengths, heavy loading of the waveguide by suit-
able paramagnetic material with high permittivity becomes
an attractive structure, the high slowing factor and filling
factor being achieved without the fabrication difficulties of
filter structures. One particular arrangement of interest is
rectangular waveguide fully filled with iron-doped rutile,
and with the c-axis lying in the transverse plane of the wave-
guide but at 65° to the narrow wall. For proper design of this
structure, the dispersion characteristics and field solutions
are required of the operating dominant mode. This would be
quite trivial if the c-axis of the material were aligned with any
of the waveguide axes, by means of suitable scaling [3], but
this skew anisotropy requires more elaborate solution.

The analysis has been by a variational approach, as the
integral form avoids the difficulties of a direct approach
(nonuniform convergence of expansions, etc.).

In spite of the considerable attention paid to wave propa-
gation in uniaxial media, and to gyrotropic loaded wave-
guide, apparently no practical solution has been presented
for this particular “skew” loading. It is therefore in order to
point out that the following method can be directly extended

to rectangular waveguide filled with general tensor permea-
bility or permittivity. For lossy material, a more general
variational expression would be required [4], [5], and as
the problem is no longer self-adjoint, one would require sepa-
rate expansions for the “original” and the “adjoint” fields.
Again it could be extended directly to circular or elliptical
waveguide fully loaded with general anisotropic material. In
all cases, the approximate solution reduces to the solution
of a matrix eigenvalue problem (the matrix describing the
mode coupling between the empty-waveguide modes), and
the exact solution is approached as the order of the matrix is
increased. ]

An approximate solution that gives the propagation con-
stant and fields in explicit form is found to be adequate for
the particular rutile-filled waveguide.

ANALYSIS

The structure under analysis is given in Fig. 1. The c-axis
of the uniaxial dielectric lies in the transverse plane (x-y
or £n) with the £-axis parallel to the c-axis. We therefore
have

wf(E*eE—l—H*uH)dS—i—jf (E*-VX H— H*-V X E)dS
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D, =10 &« 0||E, (1
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where
€11 = €1 sin? @ + €2 cos? @ (3)
€20 = €3 8In% 0 4+ € cos? P 4)
€12 = (€2 — €1) 8in 0 cos 6. (5)
We use Berk’s variational expression [6]
(6)

v =
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where the electric and magnetic field vectors are given by
E(x, y) exp j{wt—~vz) and H(x, y) exp j(wt—vz), and U, is the
z-directed unit vector. For our purposes, u is a real scalar
and e is the real symmetric matrix of (2). The above is a
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Fig. 1. Thewaveguide (x, y, z) and uniaxial (%, 4, z) coordinate systems,

variational expression—provided the trial fields E and H
have first derivatives over the cross section, the tangential
component of E vanishes over the boundary, and the propa-
gation constant v is real.

As observed by Gabriel and Brodwin [5], for a loss-free
medium we have a self-adjoint system, and so for the trial
fields used we are assured of convergence of the Rayleigh-
Ritz procedure.

We take as trial fields the following six components:

E, = ei—l mz:,) "Z::l B U, €OS (Macz/xo) sin (nay/yo)  (7)
E, = ei_lé HZ:% Pnbmn Sin (M7 /20) COS (MY /Y0) ®)
B.=j zg 3 o sin (ne/a) sin (ur/s9) (9)
H, = "g n:Zo hnlmn, 8In (Mw/20) cOS (NwYy/Yo) (10)
H, = é g P COS (Mmz/20) SIN (mry/y;)) (11)

H.=j> Z hnfmn €08 (Mmx/20) COS (NTY/Y0) (12)
m=0 n=0
where
1 m > 0
hm = { . (13)
1/4/2 m = 0.

Clearly thess fields are complete and satisfy the boundary
restrictions on trial fields. All the coefficients a, b, ¢, d, e, f
can be taken to be real. It can be seen from Maxwell’s equa-
tions that the particular anisotropy of this problem intro-
duces no coupling between assumed real and imaginary
parts of the coefficients.
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We now evaluate the integrals of (6), for instance,

f U,-(E* X H — H* X E)dS
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Similarly,
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nw mmr
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where
0 if p — ¢ is even
T = 4ph
P =1 4h o edd  (7)
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Substituting into the variational expression (6) gives

T = Z Z {w\/E [dmnz + emn2 + fmn2 + fl_l amn2

€1

€99 nm
+ - bmn2 + C‘an] + 2 [—_‘ (amn mn + cmndmn)

€1 Yo

mm

Zo
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We now have the propagation constant as the ratio of two
real quadratic forms, a form suitable for application of the
Rayleigh-Ritz procedure [7], [8].
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First Approximation

If we take as the simplest trial solution the fields of the
TE(; mode in the guide with isotropic filling, we have

B, = 4/ H dorsin (ry/yo) (19)
H, = eq sin (7y/y0) (20)
H, = jfo1 cos (my/ya). 21

Taking ao, €01, for as the only nonzero parameters in
(18) gives

Y = {w\/;; |:6012 + for? + e 0012:‘

€

2
—l— y_ CLo]f()l} /2001601. (22)
0

The usual Ritz procedure [7], [8], giving a value of ¥ sta-
tionary with respect to do1, €o1, fo1, results in

wVipe en/e —y /Yo ) [Go1 0
- wv e 0 epr) = 10 (23)
/Yo 0 wvVuer | [for 0
and the determinantal equation reduces to
¥? = oluen — (/Y0 (24

These eigenvalues and eigenvectors give us the (approxi-
mate) propagation constant and associated fields.

Restricting the trial solution to the fields of the TE,, mode,
via by, dig, and fie, similarly leads to

Y2 = o pew — (w/x0)2 (25)

Second Approximation

We now extend the Ritz manifold to include the fields cor-
responding to the TEq and TE;, modes of the isotropic
guide. Taking (do1, €o1, fo1, D10, dio, f10) as the vector gives our
second approximation:

wx/ﬁzféu/ﬂ - /Yo
—y Ve 0
‘ll'/yo 0 w\/E
JE— 8 €12
w\/uel —2‘ - 0 O
m €1
0 0 0
0 0

or

172 — wtwen + (7/y0)?} {v?2 — wlues + (n/20)?)
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= {w2ﬂ612 *}
w2

@7)
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Equation (27) gives us an explicit approximate solution
for the propagation constant and, via (26), for the electro-
magnetic fields.

The matrix elements of (26) involving ey, show clearly the
coupling between the TEy, and TE,; modes introduced by
the skew anisotropy. Because e;3=(e2— €1) sin 6 cos 6, we see
that the coupling vanishes (as it should) when the anisotropy
vanishes, or equally when the c-axis is parallel to either of
the waveguide walls.

An Economized Formulation

It should be emphasized that although the field compo-
nents associated with the TE;, and TE,; modes have been
used above, the ratios of the components have not been con-
strained to the values for waveguide with isotropic filling.
The ratios will generally be different, and to constrain them
would generally make the trial field expansions incomplete.
On the other hand, it is possible to economize by expressing
the longitudinal field components explicitly in terms of the
transverse fields.

From Maxwell’s equations we have

J (8E, OE,
H, = —{— — } (28)
wu Loz ay
. (0H, oH,
E, = —L{ - ”} . (29)
wer L 9y ox

As v is not involved in these equations, we can economize
in the number of Ritz parameters simply by substituting for
Jmn and ¢y, into (9) and (12) onward, from the following:

;i 1 {mﬂ' 5 nw p } (30)
N e T
1 {mr n7rd } 31)
Cmn = ==N"€mn — — OQmng -
w\/,uél Zo Yo
8 en
wN e — — 0 0
7 e
0 0
={
w\/,UTlézz/Q Y —ﬂ'/xo (26)
v wvVper 0
—m/20 0 w\/,(_z;

Now instead of allowing all six field components to be
“free,” we are restricting the longitudinal components to
values that satisfy part of Maxwell’s equations. It has been
shown that this still leaves “stationary” the resulting expres-
sion for « in terms of the transverse fields.
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Substituting from (30) and (31) into (18) gives

Y= Z Z {[pr,en - (nT/yO)Z]amn2

+ [w2uess — (ma/20)2]bmn?
+ [0e — (07/Yo)2]dma? + [wPuer — (ma/T6)2]emn?

v oV per w’per
wiuerr — (w/Yo)? ’Yw\/E
0 0

8
- w2M612 0
a2

mmw nw mw nw

+ 2— — amnbmn + 2— — dmnemn
To Yo Lo Yo

+ 20ues Y, 2, Tm',m)T(n, n’)amnbm»nr}

/ 20vmer 2 2 {Gmnlmn — bundmn).  (32)

This economized version of (18) has the additional ad-
vantage of a resulting secular equation which is of the stan-
dard matrix eigenvalue form

(4 — \Da = 0. (33)

This makes for straightforward evaluation by digital com-
puter. Our earlier “first approximation” now corresponds to
trial fields with a,; and ey as the only nonzero parameters in
(32). In place of (22) and (23) we now have

Y= {[w2M€11 - (W/yo)2](1012 + w2#616201}
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and

yovue,  open — (/yo)? _

o 0 35
v/ per (35)

w’ue
with the same resulting equation (24).
Our second approximation, with ag, ep, b1, and dy as
Ritz parameters, gives

0 0
— E wners o
7r2 =0 (36)
v/ e wlper

winess — (w/2)? Vw\/MT1

where the determinant has been rearranged to conform to
(33). Again, the mode coupling due to the anisotropy be-
tween the TE(; and TE;, can be seen clearly. Equation (36)
reduces to the same result as before, in (27).

From our general expression of (32) it can be seen that
this particular anisotropy, (2), introduces mode coupling be-
tween the usual TE,,, and TM,,, modes of rectangular wave-
guide, via the terms involving e, 7', m)T(n, n’). The solu-
tions will fall into two distinct groups, considered as
coupled TE,., and TM,,, cither a) for all (m, n) with m--n
even, or b) for all (m, n) with m=+n odd. The families of
modes from a) and b) will be quite distinct because the cross-
coupling terms 7', m)T(n, 1) of (32) will be zero between
the two groups.

Third Approximation

We finally extend the Ritz manifold to include the fields
of the TE¢y, TE;o, TE,s, and TM;,; modes of the isotropic

/20 uer apieo;  (34) loaded guide. Our secular equation is now
v/ e —wiue 0 0 0 0 0 0
—w?ue — 8 8v2
H YoV e — — wluer 0 0 0 wners 0
+(7/yo)? w? 32
0 0 v ey wue 0 0 0 0
8 wlue —
— wluer 0 2 YoV uer 0 0 0 0
w2 —(7/x0)?
_ —wlue = (), 37
0 0 0 0 YV ue (/2 0 — 272/ oo
0 0 0 Teken Vie  —2r/ 0
2 — z
+(2n/yo)? YOV € T/ LYo
I 1€
0 0 0 0 0 o re  yevme
—(27/y0)*
842 w?ue o
- P wlers 0 0 0 272/ x4y 0 —(71'/::)2 vy e




376

REsuLTs

Of the three successive approximations given—(24), (27),
and (37)—the first two give explicit results for the propaga-
tion constant (and the electromagnetic fields). It would be
quite straightforward to solve any reasonable order of ap-
proximation on a digital computer, by generating the matrix
elements from (32) in the computer and solving for the
matrix eigenvalue by a standard library program.

Results of the first three approximations are given in
Table I and in Fig. 2. They are computed for a waveguide of
internal dimensions 0.023 inch by 0.011 inch, filled with iron-
doped rutile with 6=65°, €,/ e,=260, and e;/¢;=130.

From these results, we first note the small difference be-
tween the second and third approximations, This difference
reflects the small effect of the mode coupling of the TE;,

TABLE I

GUIDE WAVELENGTH AS A FUNCTION OF FREE-SPACE WAVELENGTH
(BOTH IN MM)

Ao 1st Approx. 2nd Approx. 3rd Approx.
1 0.0810 0.0632 0.0629
5 0.4305 0.3650 0.3646
7 0.6463 0.5852 0.5852
8.5 0.8488 0.7922 0.7932
8.6 0.8641 0.8076 0.8088
10 1.1183 1.0577 1.0608
12 1.7368 1.6391 1.6496
14 4.5078 3.7863 3.8970
14.5 j16.287 8.4939 9.9296
15 Jj4.4047 j5.2471 75.0090
rso
50 17" Approx.

~dg 3rdApprox.

Freq(GHz) —

.5 1.0 1.5 2.0 2.5 3.0
i 1 I} 1 L i

B/21m (mm™) ——>

Fig. 2. Dispersion characteristics for waveguide of dimensions 0.023
inch by 0.011 inch, filled with rutile with e;/eo=260, e/eo= 130,
and 6=65°. The second and third approximations give results in-
distinguishable on this scale (see Table I).
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and TM;, to the more dominant TE,, and TE¢; modes. As
any higher order of approximation would require the
higher-order modes (03, 21, etc.) of the waveguide with iso-
tropic loading, we can safely conclude that, at least for this
order of anisotropy (a ratio of 2 to 1), our above approxima-
tions are close to the true values. The second approximation
is, in fact, sufficiently accurate for all practical purposes.

Modes in the High-Frequency Limit

The value of A;=0.0629 mm for A¢=1 mm compares well
with 0.0620 mm for TEM wave propagation in the un-
bounded material with polarization parallel to the c-axis.
Clearly the electric field of the dominant mode approaches
the direction of the c-axis in the small wavelength limit, as
would be expected with the higher permittivity in that direc-
tion. Table I shows, for A¢=1 mm, the successive approxi-
mations 0.0810, 0.0632, and 0.0629 to the dominant wave-
guide mode that approximates TEM parallel polarization
with 0.0620 (all figures being wavelengths in mm). The same
computations also give 0.0858 and 0.0868 as approxima-
tions to the higher-order waveguide mode that approximates
the TEM perpendicular polarization with 0.0877.

CONCLUSIONS

The variational method of solution of this problem pre-
sents results that can be interpreted directly in terms of cou-
pling of the usual rectangular waveguide modes. For the par-
ticular application to the traveling-wave maser, adequate
accuracy has been obtained using just the coupled TEy, and
TE, modes, giving the propagation and electromagnetic
fields in explicit form, from (27) and (36). Results of higher
accuracy have been obtained by computing the eigenvalues
of higher-order matrices.

Solutions have been obtained giving the correct high-
frequency limit modes, corresponding to the appropriate
two polarizations of TEM waves in the unbounded medium.
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