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Propagation in Rectangular Waveguide Filled

with Skew Uniaxial Dielectric

J. B. DAVIES

Abstract—A solution is given for propagation in rectangnhw wave-

guide fully loaded with a urdaxial dielectric, with the c-axis lying any-

where in the transverse plane. This problem arises in the design of par-

ticular traveling-wave masers. By application of the Rayleigh-Ritz method

to Berk’s variational expression, the problem is reduced to a nmtrix

eigenvalue problem, and in a form suitable for direct ewduation on a

digital computer. An explicit approximate solution is, however, shown to

give accurate results.

The analysis can be interpreted direetly in terms of mode coupling of

the usual rectangular waveguide modes, and the possible extension is indi-

cated to general tensor media and to circular or elliptical waveguide.

INTRODucT1ON

T

HE MILLIMETER wavelengths are of great interest

in applications, such as radar, satellite communica-

tion, and radio astronomy, where the requirement is

for receivers with the lowest possible noise temperature.

Traveling-wave masers are therefore being extended from

the centimetric to the millimetric wavelengths [1], [2]. At

these wavelengths, heavy loading of the waveguide by suit-

able paramagnetic material with high permittivity becomes

an attractive structure, the high slowing factor and filling

factor being achieved without the fabrication difficulties of

filter structures. One particular arrangement of interest is

rectangular waveguide fully filled with iron-doped rutile,

and with the c-axis lying in the transverse plane of the wave-

guide but at 65° to the narrow wall. For proper design of this

structure, the dispersion characteristics and field solutions

are required of the operating dominant mode. This would be

quite trivial if the c-axis of the material were aligned with any

of the waveguide axes, by means of suitable scaling [3], but

this skew anisotropy requires more elaborate solution.

The analysis has been by a variational approach, as the

integral form avoids the difficulties of a direct approach

(nonuniform convergence of expansions, etc.).

In spite of the considerable attention paid to wave propa-

gation in uniaxial media, and to gyrotropic loaded wave-

guide, apparently no practical solution has been presented

for this particular “skew” loading. It is therefore in order to

point out that the following method can be directly extended

u ( (13*eE+H%H)ds+j

to rectangular waveguide filled with general tensor permea-

bility or permittivity. For Iossy material, a more general

variational expression would be required [4], [5], and as

the problem is no longer self-adjoint, one would require sepa-

rate expansions for the “original” and the “adjoint” fields.

Again it could be extended directly to circular or elliptical

waveguide fully loaded with general anisotropic material. In

all cases, the approximate solution reduces to the solution

of a matrix eigenvalue problem (the matrix describing the

mode coupling between the empty-waveguide modes), and

the exact solution is approached as the order of the matrix is

increased.

An approximate solution that gives the propagation con-

stant and fields in explicit form is found to be adequate for

the particular rutile-filled waveguide.

ANALYSIS

The structure under analysis is given in Fig. 1. The c-axis

of the uniaxial dielectric lies in the transverse plane (x-y

or &n) with the &-axis parallel to the c-axis. We therefore

have

and hence

where

w = 61sin2 0 + e2COS2O (3)

ez2 = e2sin2 O + Cl COS20 (4)

c12 = (cz — cl) sin 0 cos 0. (5)

We use Berk’s variational expression [6]

[( E*VXH-H*.VXE),S’,
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H – H* X E)dS

where the electric and magnetic field vectors are given by

E(x, y) expj(at–~z) and H(x, y) expj(tit-~z), and U, is the

z-directed unit vector. For our purposes, ~ is a real scalar

and e is the real symmetric matrix of (2). The above is a
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the integrals of (6), for instance,

H* X E)diS

‘7
Fig. 1. The waveguide (x, y, z) and uniaxial (g, q, z) coordinate systems.

variational expression—provided the trial fields E and H

have first derivatives over the cross section, the tangential

component of E vanishes over the boundary, and the propa-

gation constant T is real.

As observed by Gabriel and Brodwin [5], for a loss-free

medium we have a self-adjoint system, and so for the trial

fields used we are assured of convergence of the Rayleigh-

Ritz procedure.

We take as trial fields the following six components:

E. =
d

7“”
– ~ ~ h. a~w cos (rrz7rz/xO) sin (n7rv/yO)
El m=o n=l

Ez=j
d

~~~ ~~ cm. sin (m7rx/zO) sin (mry/yO)

Ha = ~ ~ hndfin sin (mxx/xo) cos (nmY/yo)
?n=l ?L=O

‘m=o .=l

Hz = j jj jj Wznjmn cos (m7m/xo) cos (n7ry/.ZJo)
Wt=oIL=o

where

{

1 m>O
hm =

1/42 m=O.

. {hntannhrja,e~,n, cos (m7rx/xo) cos (m’7m/xo)

. sin (nmv/yo) sin (n’ry/yo) — hJ~~h~A~~,

.sin (m7rx/xo) sin (m’mr/xo) cos (n7fy/yo)

- COS (dTy/yo) ] dxdy

Similarly,

SW (E*eE + H*pH)dS = W/.LF x ~ f..’+ em.’
s mn

+ 2 ~ ~ ~ a~nb~,,L,T(m’, m) T(n, n’) }
(15)

and

where
(9)

1

0 if p — q is even

T(P, q) = 4phg

(lo)
if p — q is odd. (17)

~(P2 — Q2)

Substituting into the variational expression (6) gives

(12)
+ Y bmnz+ C..’ 1[+2~ (a~,,f.. + c~.d..)

cl Yo

Clearly thess fields are complete and satisfy the boundary

restrictions on trial fields. All the coefficients a, b, c, d, e, f

— E (b..f.. + c~.e..)
Xo 1

can be taken to be real. It can be seen from Maxwell’s equa-

tions that the particular anisotropy of this problem intro- We now have the propagation constant as the ratio of two

duces no coupling between assumed real and imaginary real quadratic forms, a form suitable for application of the

parts of the coefficients. Rayleigh-Ritz procedure [7], [8].
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First Approximation

If we take as the simplest trial solution the fields of the

TEOI mode in the guide with isotropic filling, we have

—

E% =
d

y aol sin (7ry/yo) (19)
cl

H. = eo, sin (ry/yJ (20)

H. = jjo, CCM(ru/uO) . (21)

Taking so,, co,, joI as the only nonzero parameters in
(18) gives

{[

611
~= —

dl.Jel e012 + f012 + — a012
q 1

}/
+ zaOJOl 2a01eO~. (22)

Yo

The usual Ritz procedure [7], [8], giving a value of 7 sta-

tionary with respect to sol, eel, fOI, results in

—
‘Cdpel fll/el —7 7r/%

-![111

aol o

–’Y U4W1 o eol =0 (23)

7r/% o Cdwl fol o

and the determinantal equation reduces to

‘Y2 = @2Wll – (7r/yJ2. (24)

These eigenvalues and eigenvectors give us the (approxi-

mate) propagation constant and associated fields.

Restricting the trial solution to the fields of the TEI, mode,

via blo, dlo, and ~lo, similarly leads to

72 = UZKC22— (T/Zo)2. (25)

Second Approximation

We now extend the Ritz manifold to include the fields cor-

responding to the TEO1 and TE1O modes of the isotropic

f b dlO,.flJ as the vector gives ourguide. Taking (sol, eel, 01, 10,

second approximation:

or

{7’ - C02WH+ (ir/Yo)2} {72

–Y ~/Yo

o 0

0 0

0 0

.
{}

:2 2“ (27)w2/..q —

Equation (27) gives us an explicit approximate solution

for the propagation constant and, via (26), for the electro-

magnetic fields.

The matrix elements of (26) involving cI, show clearly the

coupling between the TEIO and TEO1 modes introduced by

the skew anisotropy. Because cIZ= (tZ–– cl) sin 0 cos 0, we see

that the coupling vanishes (as it should) when the anisotropy

vanishes, or equally when the c-axis is parallel to either of

the waveguide walls.

An Economized Formulation

It should be emphasized that although the field compo-

nents associated with the TEIO and TEOI modes have been

used above, the ratios of the components have not been con-

strained to the values for waveguide with isotropic filling.

The ratios will generally be different, and to constrain them

would generally make the trial field expansions incomplete.

On the other hand, it is possible to economize by expressing

the longitudinal field components explicitly in terms of the

transverse fields.

From Maxwell’s equations we have

(28)

(29)

As y is not involved in these equations, we can economize

in the number of Ritz parameters simply by substituting for

fmnand cm. into (9) and (12) onward, from the following:

o

0 0 0
0 0 0

=0

(26)

—

Now instead of allowing all six field components to be

“free,” we are restricting the longitudinal components to

values that satisfy part of Maxwell’s equations. It has been

shown that this still leaves “stationary” the resulting expres-

sion for Y in terms of the transverse fields.
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Substituting from (30) and (31) into (18) gives

{
~ = ~ ~ [CJW1l — (n7r/uo)2]amn2

mn

with the same resulting equation (24).

Our second approximation, with sol, eel, blo, and dlo as

Ritz parameters, gives

+ [cd’pC,,– (mr/2il) Z]/)mn’

+ [Cd21.JeI– (n7r/yo) ‘]dmn’+ [OJ21.LeI– (mr/zo) ‘]efin’

(36)

I o 0

8

> ‘2P’12
o (@.Lezz— (7f/w))2 y(.ddpel

I

where the determinant has been rearranged to conform to

(33). Again, the mode coupling due to the anisotropy be-

tween the TEO1 and TEIO can be seen clearly, Equation (36)

reduces to the same result as before, in (27),

From our general expression of (32) it can be seen that

this particular anisotropy, (2), introduces mode coupling be-

tween the usual TE~. and TM~,, modes of rectangular wave-

guide, via the terms involving cl,T(m’, m)T(rz, n’). The solu-

tions will fall into two distinct groups, considered as

coupled TE.. and TM.. either a) for all (m, n) with m+n
even, or b) for all (m, n) with m+n odd. The families of

modes from a) and b) will be quite distinct because the cross-

coupling terms T(m’, wz)T(n, n’) of (32) will be zero between

the two groups.

This economized version of (18) has the additional ad-

vantage of a resulting secular equation which is of the stan-

dard matrix eigenvalue form

(A – kI)a = O. (33)

This makes for straightforward evaluation by digital com-

puter. Our earlier “first approximation” now corresponds to

trial fields with aol and eol as the only nonzero parameters in
Third Approximation

(32). In place of (22) and (23) we now have

‘y = { [c+ll – (~/y0)21a012 + @wle201j
We finally extend the Ritz manifold to include the fields

of the TEo1, TE1O, TEIZ, and TMIZ modes of the isotropic

/zcdLL61 aOleOl (34)
—

loaded guide. Our secular equation is now

= o. (37)

—

ywv’pel

— CqJtll

+ (7r/Yo)2

0

8

7 ‘2P’”

o

0

0

—C+l o 0 0

0

0

0

yw</..Jq

o

0

o

o 0

0 0 0 0 – 27i-2/xoyo

—oJ2/Jell

+ (27r/yo) 2

0

0 0 0 – 21r’/xoyo o

+.@
-yud/.4q

– (27r/yo) 2
0 0 0 27r2/xoyo

o 0 0 21r2/xoyo o
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RESULTS

Of the three successive approximations given—(24), (27),

and (37)—the first two give explicit results for the propaga-

tion constant (and the electromagnetic fields). It would be

quite straightforward to solve any reasonable order of ap-

proximation on a digital computer, by generating the matrix

elements from (32) in the computer and solving for the

matrix eigenvalue by a standard library program.

Results of the first three approximations are given in

Table I and in Fig. 2. They are computed for a waveguide of

internal dimensions 0.023 inch by 0.011 inch, filled with iron-

doped rutile with 0= 65°, C,/CO= 260, and ,,/,.= 130.

From these results, we first note the small difference be-

tween the second and third approximations. This difference

reflects the small effect of the mode coupling of the TE1.2

TABLE I

GUIDEWAVELENGTHASA FUNCTIONOFFREE-SPACEWAVELENGTH
(BOTHm MM)

10 1st Approx. 2nd Approx. 3rd Approx.

1
5
7
.8.5
8.6

10
12
14
14.5
15

0.0810
0.4305
0.6463
0.8488
0.8641
1.1183
1.7368
4.5078

j16.287
j4. 4047

0.0632
0.3650
0.5852
0.7922
0.8076
1.0577
1.6391
3.7863
8.4939

j5. 2471

0.0629
0.3646
0.5852
0.7932
0.8088
1.0608
1.6496
3.8970
9.9296

j5. 0090

-lo

.5 1.0 1.5 2.0 2.5 3.0
,

p/2Tf (mm-l) ~

Fig. 2. Dispersion characteristics for waveguide of dimensions 0.023
inch by 0.011 inch, filled with rutile with ●z/cO= 260, eI/co = 130,

and 0=65 0. The second and third approximations give results in-
distinguishable on this scale (see Table I).

and TM12 to the more dominant TEIO and TEO1 modes. As

any higher order of approximation would require the

higher-order modes (03, 21, etc.) of the waveguide with iso-

tropic loading, we can safely conclude that, at least for this

order of anisotropy (a ratio of 2 to 1), our above approxima-

tions are close to the true values. The second approximation

is, in fact, sufficiently accurate for all practical purposes.

Modes in the High-Frequency Limit

The value of ~, = 0.0629 mm for Ao= 1 mm compares well

with 0.0620 mm for TEM wave propagation in the un-

bounded material with polarization parallel to the c-axis.

Clearly the electric field of the dominant mode approaches

the direction of the c-axis in the small wavelength limit, as

would be expected with the higher permittivity in that direc-

tion. Table I shows, for 10=1 mm, the successive approxi-

mations 0.0810, 0.0632, and 0.0629 to the dominant wave-

guide mode that approximates TEM parallel polarization

with 0.0620 (all figures being wavelengths in mm). The same

computations also give 0.0858 and 0.0868 as approxima-

tions to the higher-order waveguide mode that approximates

the TEM perpendicular polarization with 0.0877.

CONCLUSIONS

The variational method of solution of this problem pre-

sents results that can be interpreted directly in terms of cou-

pling of the usual rectangular waveguide modes. For the par-

ticular application to the traveling-wave maser, adequate
accuracy has been obtained using just the coupled TEIO and

TEOI modes, giving the propagation and electromagnetic

fields in explicit form, from (27) and (36). Results of higher

accuracy have been obtained by computing the eigenvalues

of higher-order matrices.

Solutions have been obtained giving the correct high-

frequency limit modes, corresponding to the appropriate

two polarizations of TEM waves in the unbounded medium.
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